Differential Equations (ENG.)

Classification of Differential Equations

Víctor Hugo Gil Avendaño ${ }^{1}$
${ }^{1}$ Dpto. de Matemáticas
Universidad Autónoma de Occidente
vhgil@uao.edu.co

DifferentialEquations

Recall that a differential equation is an equation (has an equal sign) that involves derivatives. Just as biologists have a classification system for life, mathematicians have a classification system for differential equations. We can place all differential equation into two types: ordinary differential equation and partial differential equations.

1. Partial vs. Ordinary Differential Equations

An ordinary differential equation is an equation relating a function and its derivatives with respect to a single variable.

A partial differential equation is one relating a function of more than one variable to its partial derivatives.

Example 1.

$$
\frac{d \phi(x)}{d x}+g(x) \phi(x)=0
$$

is an ordinary differential equation, while

$$
\frac{\partial f(x, y)}{\partial x}+G(x, y) f(x, y)=0
$$

is a partial differential equation.
In this course we shall deal almost exclusively with ordinary differential equations.

2. The order of a Differential Equations

The order of a differential equation is the highest number of derivatives appearing in the equation. Thus,

$$
2 x^{2} \frac{d f}{d x}+\sqrt{x} \frac{d^{3} f}{d x^{3}}+e^{x}=2
$$

is an third order, ordinary, differential equation, while

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}-\frac{\partial^{2} \phi}{\partial t^{2}}=0
$$

is a second order, partial, differential equation.

Example 2.

$$
\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{4}=3 x \sin x
$$

is a second order differential equation, since a second derivative appears in the equation.
-

$$
3 y^{4} y^{\prime \prime \prime}-x^{3} y^{\prime}+e^{x y} y=0
$$

is a third order differential equation.

3. Linear vs Non-Linear Differential Equations

An ordinary or partial differential equation is said to be linear if it is linear in the "unknowns" $y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}$. Thus, a general, linear, ordinary, $n^{\text {th }}$ order, differential equation would be one of the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+y=b(x)
$$

It is important to note that the functions $a_{n}(x), a_{n-1}(x), \ldots, a_{1}(x), g(x)$ need not be linear functions of x. The following two examples should convey the general idea.

Example 3.

-

$$
x^{2} \frac{\partial f}{\partial x}+z \frac{\partial^{2} f}{\partial y^{2}}=e^{x y z}
$$

is a $2^{\text {nd }}$ order, linear, partial, differential equation.

$$
\frac{d^{3} y}{d x^{3}}+x^{2} \frac{d y}{x} y^{2}=1
$$

is a non-linear, ordinary, differential equation of order 3. The equation is non-linear arises because of the presence of the term y^{2} which is a quadratic function of the unknown function y.

Stop!

$$
\left(\frac{d y}{d x}\right)^{2} \neq \frac{d^{2} y}{d x^{2}}
$$

4. Homogeneous vs. heterogeneous

A differential equation is homogeneous if it contains no non-differential terms and heterogeneous if it does.

Example 4.

$$
\frac{d y}{d x}=\mathbf{a x}
$$

and

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=\mathbf{b}
$$

are heterogeneous (unless the coefficients a and b are zero), but

$$
\frac{d y}{d x}+y \cos x=0
$$

is homogeneous.

A zero right-hand side is a sign of a tidied-up homogeneous differential equation, but beware of non-differential terms hidden on the left-hand side!

